Persistence Codebooks for Topological Data Analysis

نویسندگان

  • Bartosz Zielinski
  • Mateusz Juda
  • Matthias Zeppelzauer
چکیده

Topological data analysis, such as persistent homology has shown beneficial properties for machine learning in many tasks. Topological representations, such as the persistence diagram (PD), however, have a complex structure (multiset of intervals) which makes it difficult to combine with typical machine learning workflows. We present novel compact fixed-size vectorial representations of PDs based on clustering and bag of words encodings that cope well with the inherent sparsity of PDs. Our novel representations outperform state-of-the-art approaches from topological data analysis and are computationally more efficient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm

This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...

متن کامل

Applications of Zigzag Persistence to Topological Data Analysis

The theory of zigzag persistence is a substantial extension of persistent homology, and its development has enabled the investigation of several unexplored avenues in the area of topological data analysis. In this paper, we discuss three applications of zigzag persistence: topological bootstrapping, parameter thresholding, and the comparison of witness complexes.

متن کامل

Optimal rates of convergence for persistence diagrams in Topological Data Analysis

Computational topology has recently known an important development toward data analysis, giving birth to the field of topological data analysis. Topological persistence, or persistent homology, appears as a fundamental tool in this field. In this paper, we study topological persistence in general metric spaces, with a statistical approach. We show that the use of persistent homology can be natu...

متن کامل

Persistence weighted Gaussian kernel for topological data analysis

Topological data analysis (TDA) is an emerging mathematical concept for characterizing shapes in complex data. In TDA, persistence diagrams are widely recognized as a useful descriptor of data, and can distinguish robust and noisy topological properties. This paper proposes a kernel method on persistence diagrams to develop a statistical framework in TDA. The proposed kernel satisfies the stabi...

متن کامل

Convergence rates for persistence diagram estimation in Topological Data Analysis

Computational topology has recently seen an important development toward data analysis, giving birth to the field of topological data analysis. Topological persistence, or persistent homology, appears as a fundamental tool in this field. In this paper, we study topological persistence in general metric spaces, with a statistical approach. We show that the use of persistent homology can be natur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.04852  شماره 

صفحات  -

تاریخ انتشار 2018